Prior reduced fill-in in solving equations in interior point algorithms
نویسندگان
چکیده
منابع مشابه
Prior reduced fill-in in solving equations in interior point algorithms
The efficiency of interior-point algorithms for linear programming is related to the effort required to factorize the matrix used to solve for the search direction at each iteration. When the linear program is in symmetric form (i.e., the constraints are Ax < b, x > 0 ), then there are two mathematically equivalent forms of the search direction, involving different matrices. One form necessitat...
متن کاملNovel Interior Point Algorithms for Solving Nonlinear Convex Optimization Problems
This paper proposes three numerical algorithms based on Karmarkar’s interior point technique for solving nonlinear convex programming problems subject to linear constraints. The first algorithm uses the Karmarkar idea and linearization of the objective function.The second and third algorithms are modification of the first algorithm using the Schrijver andMalek-Naseri approaches, respectively. T...
متن کاملNew Interior Point Algorithms in Linear Programming †
In this paper the abstract of the thesis ”New Interior Point Algorithms in Linear Programming” is presented. The purpose of the thesis is to elaborate new interior point algorithms for solving linear optimization problems. The theoretical complexity of the new algorithms are calculated. We also prove that these algorithms are polynomial. The thesis is composed of seven chapters. In the first ch...
متن کاملanalyzing patterns of classroom interaction in efl classrooms in iran
با به کار گیری روش گفتما ن شنا سی در تحقیق حا ضر گفتا ر میا ن آموزگا را ن و زبا ن آموزا ن در کلا سهای زبا ن انگلیسی در ایرا ن مورد بررسی قرار گرفت. ا هداف تحقیق عبا رت بودند از: الف) شنا سا ئی سا ختارهای ارتبا ط گفتا ری میا ن معلمین و زبا ن آموزا ن ب) بررسی تا ثیر نقش جنسیت دبیرا ن و زبا ن آموزان بر سا ختا رهای ارتبا ط گفتا ری میا ن آنها پ) مشخص کردن اینکه آ یا آموزگاران غا لب بر این ارتبا ط گف...
Stability of Linear Equations Solvers in Interior-Point Methods
Primal-dual interior-point methods for linear complementarity and linear programming problems solve a linear system of equations to obtain a modiied Newton step at each iteration. These linear systems become increasingly ill-conditioned in the later stages of the algorithm, but the computed steps are often suuciently accurate to be useful. We use error analysis techniques tailored to the specia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research Letters
سال: 1992
ISSN: 0167-6377
DOI: 10.1016/0167-6377(92)90024-w